Exercises

We suggest you do these on your own. As with any homework problem, though, you may ask the TAs for help.

All solutions must include their writer's STUDENT ID.

1. A file contains the following characters with the frequencies as shown. If Huffman Coding is used for data compression, determine Huffman code of each character.

Character	Frequency
а	10
е	15
i	12
о	3
u	4
S	13
t	1

2. Find the minimum spanning tree using Prim's algorithm for each of the graphs below.

3. Given the arrival and departure times of all trains that reach a railway station, the task is to find the minimum number of platforms required for the railway station so that no train waits. (write pseudocode, Approach must be Greedy Algorithm).

Input: We are given two arrays that represent the arrival and departure times of trains that stop.

Examples:

```
inputs:
arrival[] = {9:00, 9:40, 9:50, 11:00, 15:00, 18:00}
dep[] = {9:10, 12:00, 11:20, 11:30, 19:00, 20:00}
```

Output: 3, There are at-most three trains at a time (time between 11:00 to 11:20)

- **4.** Graph coloring (also called vertex coloring) is a way of coloring a graph's vertices such that no two adjacent vertices share the same color. Your task is to design a Greedy Algorithm that assigns a color to each node which satisfies the above constraint.(write pseudocode, assume we have edges and nodes. V.adj will give us the adjacent nodes.)
- **5.** Which of the following algorithms is more suitable for finding the minimum spanning tree of a solitary graph?(**explain and justify your answer**)

a) Floyd b) Prime c) Kruskal d)Dijkstra

6. Consider the following tasks, deadlines and benefits.Use a timed scheduling algorithm to maximize the total profit .

work	deadline	profit
1	2	40
2	4	15
3	3	60
4	2	20
5	3	10
6	1	45
7	1	55