Homework 1 : Notation

Problems:

- 1. Show the correctness of the following statements :
 - $log(n) \in O(n)$
 - $n \in O(n. log(n))$
 - $n. log(n) \in O(n^2)$
 - $2^n \in \Omega(5. \ln(n))$
- 2. Sort the following functions by complexity :

n.log(n)	—	$\left(log(n)\right)^3$	$-$ (5 n^2	+	7 <i>n</i>) –	$n^{5/2}$	- $n!$
n^n –	$(n^{n} +$	ln(n)) –	$5^{log(n)}$	_	log(n!)	_	(log(n))!
\sqrt{n} –	e^n –	- (8 <i>n</i> + 1	12) –	10^{n}	$+ n^{20}$		

- 3. What is the time complexity **T(n)** of the nested loops below?
 - For simplicity, you may assume that n is a power of 2.
 That is "n = 2^k" for some positive integer k.

int j;	
<pre>for(int i = 0 ; i < n ; i++){</pre>	
j = n;	
while(j >= 1){	
j = j / 2;	
}	

4. Consider the following algorithm :

- a. If n = 5 and the array A contains 2, 5, 3, 7 and 8, what's the output?
- b. What's the time complexity T(n) of the algorithm?
- c. Try to improve the efficiency of the algorithm.
- 5. Give an algorithm for the following problem. Given a list of n distinct Positive integers, partition the list into 2 sublists, each of size n/2, such That the difference between the sums of the integers in the 2 sublists is Minimized. Determine the time complexity of your algorithm. You may assume that n is a multiple of 2.
- 6. Suppose you have a computer that requires 1 minute to solve problem Instances of size n = 1,000. Suppose you buy a new computer that runs 1,000 times faster than the old one. What instance sizes can be run in 1 Minute, assuming the following time complexities T(n) for our algorithm?
 - T(n) = n
 - T(n) = n ^ 3
 - T(n) = 10 ^ n